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Recap

By now, we know

▶ What is a linear program?

▶ How to model some of the problems as a linear program?

▶ General concepts such as bounds, maximum, supremum, etc.

▶ General concepts such as halfspace, polyhedra, convex set, convex
hull, extreme point, etc.

▶ How to write an LP in standard form?

▶ Reformulate pointwise max/min, linear fractional programs into LP.
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A look at LP graphically

Suppose we want to solve the following LP:

Z =maximize
x,y

x+ 3y (1a)

subject to 2x+ y ≤ 8 (1b)

y ≤ 4 (1c)

x ≥ 0 (1d)

y ≥ 0 (1e)
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Figure: Optimal solution is obtained at an extreme point (2, 4)
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Definitions

Definition (Extreme point) Let P = {x ∈ Rn : Ax ≤ b} be a polyhedron.
We say that x ∈ P is an extreme point if we cannot express x as a
convex combination of two other points in P .

Definition (Vertex) A face of dimension 0 of a polyhedron
P = {x ∈ Rn : Ax ≤ b} is known as a vertex.

Definition (Basic feasible solution) Let P = {x ∈ Rn : Ax ≤ b} be a
polyhedron. We say that x ∈ P is a basic feasible solution if there are n
linearly independent constraints of Ax ≤ b active at x.

Definition (Exposed solution) Let P = {x ∈ Rn : Ax ≤ b} be a
polyhedron. We say that x ∈ P is an exposed solution if there exists
c ∈ Rn such that cTx < cT x̂,∀x̂ ∈ P\{x}.

Equivalence between vertex, extreme point, basic solution, and exposed solution 8



Theorem
Let P = {x ∈ Rn : Ax ≤ b} be a non-empty polyhedron. Let x ∈ P .
The following statements are equivalent.

1. x is an extreme point.

2. x is a vertex.

3. x is a basic feasible solution.

4. x is an exposed solution.

Equivalence between vertex, extreme point, basic solution, and exposed solution 9



Theorem
Let P be a non-empty polyhedron. Consider LP min{cTx s.t. x ∈ P}.
Suppose the LP has at least one optimal solution and P has at least one
extreme point. Then, above LP has at least one extreme point of P that
is an optimal solution.

▶ This means that we need to search only among extreme points to
find an optimal solution to LP.

▶ Since there are finite extreme points, we can just check out the
objective value at every extreme point and find out which one
attains the optimal value. BUT this doesn’t seem practical!
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Standard Form of LP

Z =minimize
x

cTx (2a)

subject to Ax = b (2b)

x ≥ 0 (2c)

where, c ∈ Rn, x ∈ Rn, A ∈ Rm×n (m < n fat matrix), b ∈ Rm.

Assumption: A has linearly independent rows (full rank m).

What if the assumption is not satisfied?

▶ Either there are redundant constraints, which one can remove or
inequations are not consistent (in which case there is no feasible
solution).
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Proposition
Consider an LP in standard form min{cTx s.t. Ax ≤ b,x ≥ 0}. Then, x̂
is a basic solution iff ∃ m columns of A (denoted as AB(1), ..., AB(m))
such that

1. columns AB(1), ..., AB(m) are linearly independent

2. x̂i = 0,if i /∈ {B(1), ..., B(m)}

To find a basic solution x̂,

1. Select m independent columns of A, i.e., AB(1), ..., AB(m)

2. Set x̂i = 0,if i /∈ {B(1), ..., B(m)} (non-basic variables)

3. Solve Ax̂ = b for the remaining variables x̂B(1), ..., x̂B(m) (basic
variables)

If xB(i) ≥ 0,∀i = 1, ...,m, then x̂ is a basic feasible solution.
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A first look at the Simplex Method

Consider the previous LP but in standard form:

Z =minimize
x1,x2

−x1 − 3x2 (3a)

subject to 2x1 + x2 +s1 = 8 (3b)

x2 + s2 = 4 (3c)

x1, x2, s1, s2 ≥ 0 (3d)

Our strategy is to find a feasible solution (x1, x2, s1, s2) and proceed to
another feasible solution (x̄1, x̄2, s̄1, s̄2) which is better in the sense that

−x̄1 − 3x̄2 < −x1 − 3x2

By repeating this procedure multiple times, we shall eventually arrive at
an optimal solution.

Simplex Method 15



A first look at the Simplex Method

s1 = 8− 2x1 − x2 (4)

s2 = 4 − x2 (5)

Z = − x1 − 3x2 (6)

▶ To begin with we set x1 = x2 = 0 and we find s1 = 8, s2 = 4. The
solution (0, 0, 8, 4) yields Z = 0.

▶ To decrease the objective value, we know that we should increase
the value of x1, x2, but how much? We should keep in mind that by
increasing the value of x1, x2, we should not make s1, s2 negative.

▶ Assuming that we only increase the value of x1 and keep x2 = 0, (4)
implies that s1 = 8− 2x1 − x2 ≥ 0 =⇒ x1 ≤ 4.

▶ Similarly, (5) implies that s2 = 4− x2 ≥ 0 =⇒ 4 ≥ 0.
▶ We choose x1 = 4, x2 = 0, which gives us Z = −4 (an improvement

in the objective value).
▶ We had all the variables taking zero values on the r.h.s. and rest on

the l.h.s. By changing the value of x2, we have changed that
pattern. Let’s rearrange.Simplex Method 16



A first look at the Simplex Method

x1 = 4− 1

2
s1 −

1

2
x2 (7)

s2 = 4 − x2 (8)

Z = −4 +
1

2
s1 −

5

2
x2 (9)

▶ Increasing the value of s1 will not help in reducing the objective
value further, but increasing x2 will.

▶ Keeping s1 = 0, we increase x2.

▶ (7) implies x1 = 4− s1 − 1
2x2 ≥ 0 =⇒ x2 ≤ 8

▶ (8) implies s2 = 4− x2 =⇒ x2 ≤ 4. x2 = 4 is the best we can do.

▶ New solution is x1 = 2, x2 = 4, s1 = 0, s2 = 0 and the new objective
value is Z = −14.
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A first look at the Simplex Method

We again write the system by writing x2 on LHS

x2 =4− s2 (10)

x1 =2− 1

2
s1 +

1

2
s2 (11)

Z =− 14 +
1

2
s1 +

5

2
s2 (12)

▶ Increasing the value of s1 and s2 will not help in reducing the
objective value further. Therefore, we have arrived at an optimal
solution (2, 4, 0, 0).
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A first look at the Simplex Method

Figure: Observe the direction of exploring extreme points
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Feasible direction

For a given basic feasible solution (BFS), let
▶ N : index set of non-basic variables (ones on the r.h.s.)
▶ B: index set of basic variables (Basis) (ones on the l.h.s.)
▶ AB : m×m matrix (invertible) corresponding to m columns of

basic variables
▶ AN : m× (n−m) matrix corresponding to n−m columns of

non-basic variables
▶ Set of equations at every step of the simplex method is called a

dictionary.
The value of basic variables is x̂B = A−1

B b.

Definition (Feasible direction) Given x̂ (feasible), we say d ∈ Rn is a
feasible direction if x̂+ θd is feasible for some θ > 0.
▶ As we know x̂j = 0,∀j ∈ N , we try to pick some j

′ ∈ N and

increase the value of x̂j′ while keeping x̂j = 0,∀j ̸= j
′
.

▶ Essentially, we are looking for d ∈ Rn such that
dj = 1, for some j ∈ N and dk = 0 for k ∈ N\{j} and moving from
x̂ to x̂+ θd, θ > 0, we have A(x̂+ θd) = b.
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Feasible direction

▶ A(x̂+ θd) = b =⇒ Ad = 0 (since Ax̂ = b).

▶ Ad = 0 =⇒ ABdB +ANdN = 0 =⇒ ABdB +Aj = 0

▶ =⇒ dB = −A−1
B Aj .

▶ d =
[
−A−1

B Aj ; 0; ... 1; 0; ... 0
]
. We call this d as the jth

basic direction.
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Change in the objective value

▶ Change in the objective value: cT [x+ θd]− cTx = θcTd

▶ Rate of change in the objective function.

cTd = cTBdB +
∑

k∈N ckdk (13)

= −cTBA
−1
B Aj + cj (14)

▶ c̄j = cj − cTBA
−1
B Aj is called reduced cost of variable j ∈ N .

▶ Note: For basic variable
c̄B(i) = cB(i) − cTBA

−1
B AB(i) = cB(i) − cTBei = 0.

Theorem
Let x̂ be BFS. If c̄ ≥ 0, then x̂ is optimal.

This gives us a stopping criterion for the simplex method. If all the
reduced costs are non-negative, then we stop. This means we cannot find
a neighboring solution which is better than the current solution.
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Changing the basis

▶ If we have, c̄j < 0 for some j ∈ N , then by bringing the jth

non-basic variable (entering variable) into the basis will further
decrease the objective value. So, we want to go in the jth basic
direction d. But how much should we go in that direction? i.e., θ =?

▶ Let θ∗ be the largest value of θ s.t. x̂+ θ∗d is still feasible.

1. dk ≥ 0, ∀k ∈ {1, ..., n}. Then, x̂+ θd ≥ 0, ∀θ ≥ 0 and
A(x̂+ θd) = b (since Ad = 0). Therefore, x̂+ θd ≥ 0, ∀θ. But we
travel in this direction, the objective function will keep reducing since
c̄j < 0. Therefore, LP is unbounded.

2. dk < 0 for some k ∈ {1, ..., n}. Then, we want x̂k + θ∗dk ≥ 0,∀k
s.t. dk < 0 =⇒ θ∗ ≤ − x̂k

dk
, ∀k s.t. dk < 0.

θ∗ = min
{k∈B:dk<0}

{
− x̂k

dk

}
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Changing the basis

Proposition
Let y = x̂+ θd as computed above. Then, y is a BFS.

If we don’t have degenerate vertices, i.e, x̂B(i) > 0,∀i. Then, θ∗ > 0
using above formula and change in the objective value θ∗c̄j < 0.

Theorem
If all BFS are non-degenerate then the simplex algorithm described above
finds an optimal solution or detects unboundedness in finite time.
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Simplex algorithm

0. We start with a BFS x̂ (with corresponding basis B)

1. Compute the reduced costs c̄j = cj − cTBA
−1
B Aj ,∀j ∈ N

– If c̄j ≥ 0∀j, then set x̂ as OPTIMAL.
– Otherwise, choose some j ∈ N such that cj < 0. If multiple choices

available, choose one with the smallest index (Bland’s rule)

2. Compute the jth basic direction
d =

[
−A−1

B Aj ; 0; ... 1; 0; ... 0
]
.

– If d ≥ 0, then set problem as UNBOUNDED and Z∗ = −∞
– Otherwise, compute θ∗ = min

{i∈B:di<0}

{
− x̂i

di

}
. If multiple i achieves

minimum, select one with the smallest index (Bland’s rule).

3. Define the new BFS x̂+ θ∗d. (New BFS with index j replacing B(l)

in the basis, where B(l) = argmin
{i∈B:di<0}

{
− x̂i

di

}
)

4. Repeat 1-3
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Degeneracy

▶ It is possible that the objective value does not change from one
iteration to another in the simplex method. When will that happen?

▶ θ∗c̄j = 0 =⇒ θ∗ = 0 which implies that x̂i = 0 for some i ∈ B,i.e.,
there is zero in the current BFS x̂.

▶ This may result in cycle and the algorithm will not terminate.

Definition (Degeneracy): We call a BFS degenerate if some of its basic
variables are zero.

▶ Also, if c̄j < 0 for multiple j ∈ N . Then, which non-basic index
should enter the basis?

Bland’s rule: If c̄j < 0 for multiple j ∈ N , choose one with the smallest
index for entering the basis. Similarly, if multiple i ∈ B : di < 0 attains

the minimum in
{
− x̂i

di

}
, then choose one with the smallest index to

leave the basis.

Theorem
Simplex algorithm implemented with Bland’s rule will not cycle.
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Simplex Tableau

▶ A simpler implementation of the Simplex Method.

▶ You can solve small sized problems using pen and paper.

Reduced cost -Objective value
A b

cT − cTBA
−1
B A -cTBA

−1
B b

A−1
B A A−1

B b

0m cTN − cTBA
−1
B AN -cTBA

−1
B b

Im×m A−1
B AN A−1

B b

If the first row of the LHS (reduced costs) are all non-negative, then
we’ve reached an optimal solution.
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Steps

1. Compute the reduced costs
2. Choose the incoming basis
3. Compute θ∗ and choose the outgoing basis
4. Update the tableau with new basis

Above procedure is called pivoting.
Consider the previous example.

Basis -1 -3 0 0 0
s1 2 1 1 0 8
s2 0 1 0 1 4

(Pivoting Step 1): Choose the incoming basis. Since both x1 and x2

have negative reduced costs, both can be allowed to enter the basis.
Let’s select x1 (pivot column) using Bland’s rule.

(Pivoting Step 2): Choose the outgoing basis. Remember

θ∗ = min
{i∈B:di<0}

{
− x̂i

di

}
= min

Āij>0

{
b̄i
Āij

}
(index of entering variable is j).

This is called the Minimal Ratio Test (MRT). If Āij < 0,∀i, then LP is
unbounded.
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Steps

We have θ∗ = min{ 8
2}. The first row (pivot row) attains the minimum.

Therefore, s1 is the outgoing basis. The intersection of pivot row and
pivot column is the pivot element.

(Step 3): Updating the tableau. First divide the each element of the
pivot row by pivot element. Then add or subtract multiples of pivot row
to other rows (including the first row) such that the elements in the pivot
column (except pivot element) becomes zero. This operation is also
performed on the RHS (current BFS).

Basis 0 -5/2 1/2 0 4
x1 1 1/2 1/2 0 4
s2 0 1 0 1 4

(Step 4): Repeat steps 1-3 until all elements in the top row becomes
non-negative.

Since only x2 has the negative reduced cost. It enters the basis. Also,
from minimal ratio test, we have θ∗ = min{ 4

1/2 ,
4
1} = 4. Therefore, s2 is

leaves the basis.
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Steps

Basis 0 0 1/2 5/2 14
x1 1 1/2 1/2 -1/2 2
x2 0 0 0 1 4

Since all the reduces costs are non-negative, current basis is optimal. The
optimal solutions is bottom RHS, i.e., (x∗

1, x
∗
2) = (2, 4) and the optimal

value is the negative of top RHS, i.e., Z∗ = −14.
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Phase-I simplex method

Two things left
▶ We don’t no how to find an initial BFS. It is straight forward to find

an initial BFS if we derived standard form by adding a slack to each
constraint (previous example).

▶ We don’t know if LP is infeasible.
Assume b ≥ 0 (multiply constraint by -1 if needed).

Z =minimize
x,y

m∑
i=1

yi (15a)

subject to Ax+ y = b (15b)

x ≥ 0 (15c)

y ≥ 0 (15d)

We can solve above program using the simplex method. Clearly, (0,b) is
an initial BFS.

Proposition
The original LP is feasible iff the Phase-I LP objective value is 0.
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Suggested Reading

▶ VR Chapter 2

▶ VR Chapter 3
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George Bernard Dantzig

Figure: George Bernard Dantzig invented the Simplex Method

(Picture source: malevus.com)
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Final thoughts

▶ Simplex method is not a polynomial time algorithm. Klee and Minty
(1992) showed an example where it will run exponential iterations
(in terms of n) to stop. However, the average performance of
simplex method is very good and it remains one of the widely used
algorithms to solve LP.

▶ Soviet Union mathematician Khachiyan in 1979 devised a first
polynomial-time algorithm for LP. His method is called the ellipsoid
method. However, it is observed to be slow in practice.

▶ Narendra Karmarkar (IITB graduate) devised an interior point
method in 1984, which is a polynomial time algorithm and it is quite
efficient in practice.

▶ We’ll study LP duality theory in the next lecture.
▶ If you are interested, read the following topics from the book.

– Dual Simplex
– Revised Simplex
– Sensitivity analysis
– Network simplex method
– Primal-dual method
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